

Brève histoire et description de l'entreprise

Pourquoi préférer un produit coulé

Fondée en 1977, la société FAI-FTC S.p.A. est une fonderie de produits en aciers inoxydables résistants à la chaleur. Ses deux établissements réalisent des coulées statiques et des tubes centrifugés à partir de projets et de spécifications des clients.

> Les marchés de référence sont essentiellement l'industrie sidérurgique, le traitement thermique, la pétrochimie et les incinérateurs.

> La qualité du produit et un service innovant constituent les valeurs fondamentales de la société. La conviction qu'un Système de gestion qualité était essentiel à des améliorations continues a incité la société à obtenir sa première certification selon les normes UNI dès 1994.

de production.

Depuis sa fondation, FAI-FTC est membre de la Steel Founders Society of America, association américaine des fonderies d'acier, ce qui lui permet d'être toujours informée des innovations et des nouvelles recherches du secteur, tant en ce qui concerne les matériaux que les techniques

projetée, comporte moins de défauts et plus de résistance.

sous forme fixe ou centrifugée en coquille rotative.

processus

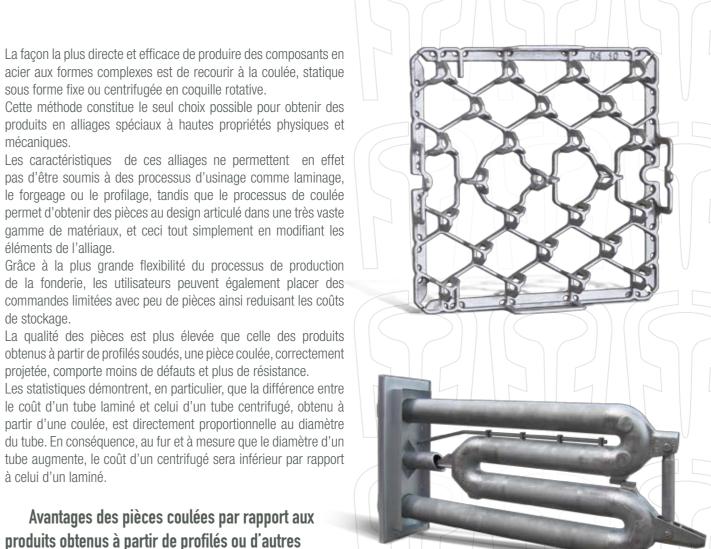
à celui d'un laminé.

mécaniques.

de stockage.

éléments de l'alliage.

- Flexibilité du projet: cette technique de production permet de créer des pièces coulées de forme complexe.
- Adaptabilité métallurgique: le processus permet d'utiliser un nombre d'alliages présentant de hautes propriétés mécaniques.
- Qualité: meilleure uniformité des propriétés mécaniques.
- Coûts réduits: longévité accrue du produit et quantités limitées du lot de production minimum.



Fai

Comment commander les produits coulés

L'étroite coopération entre les bureaux techniques lors de la définition et de la mise en projet du produit coulé et la planification des délais de réalisation permettent aux deux parties d'obtenir une satisfaction extrême et des résultats optimisés.

La production d'une pièce coulée, par n'importe quel procédé de moulage, prévoit des informations fondamentales :

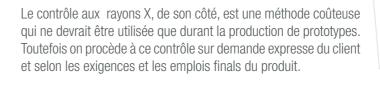
- (plan, tolérances dimensionnelles, usinages mécaniques)
- nombre de pièces
- essais de fonctionnement
- exigences supplémentaires comme par exemple:
 - contrôle par ressuage, contrôles aux rayons X
 - niveaux d'acceptabilité
- toute autre information pouvant contribuer au succès de la production et à l'utilisation finale du produit coulé

Toutes les informations pertinentes doivent être établies à partir de la demande d'offre ainsi que sur la commande.

La qualité d'un produit coulé détermine son coût réel : plus la

qualité du produit coulé est élevée, et plus son coût réel est bas.

La qualité des produits coulés


prolongée et réduit, par conséquent, le nombre de montages à l'atelier de l'équipement dus au remplacement des composants abîmés.

Les contrôles de qualité des produits coulés représentent donc une phase importante du processus de production. Toutefois, il faut être attentif à ne pas demander plus de contrôles que ceux nécessaires, pour ne pas accroître excessivement le prix final des

Il y à deux méthodes courantes, rapides et économiques, permettant de vérifier la qualité des produits coulés:

- contrôle visuel et dimensionnel: c'est une méthode de réalisation rapide et à très bas coût qui permet de détecter immédiatement les éventuels défauts de surface comme la porosité, les failles, les inclusions, etc.
- contrôle par ressuage: méthode simple et à bas coût, permettant de détecter les défauts de surface invisibles à l'oeil nu.

Recommandations concernant l'utilisation

des produits coulés

La durée de vie des produits coulés résistants à la chaleur peut être prolongée en suivant quelques règles très simples:

- manipuler avec soin les produits coulés durant le déballage, le stockage et le montage: les alliages résistants à la chaleur offrent une basse ductilité à température ambiante; le moindre choc risque d'endommager la pièce;
- nettoyer les surfaces des substances polluantes (huiles, graisses, peintures, etc.) avant d'introduire à nouveau le produit dans le four: à haute température, les substances polluantes peuvent rendre corrosive l'atmosphère du four.
- pendant le fonctionnement, vérifier périodiquement la surface du produit coulé, en notant la présence de toute discontinuité et le délai après lequel elle est apparue. Il est conseillé d'informer immédiatement le fournisseur, en vue de comprendre les causes du phénomène et les mesures à adopter pour retarder ou éviter d'autres dommages ;
- informer votre fournisseur en cas de modification des conditions d'exploitation du four.

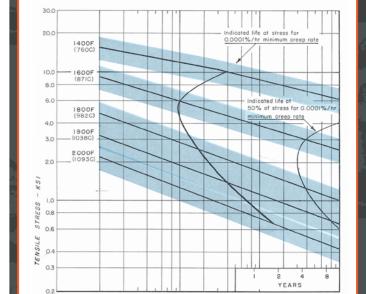
Un échange constant d'informations, entre l'utilisateur et la fonderie, contribue généralement à l'amélioration du produit, y compris en cas de conditions d'exploitation extrêmement difficiles.

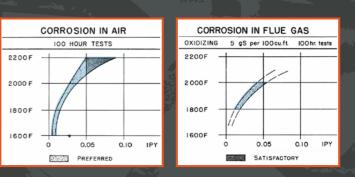
Les aciers coulés résistants à la chaleur sont utilisés dans les installations comportant une température d'exploitation supérieure à 650°C (1.200°F) et peuvent résister à des températures jusqu'à 1.220°C (2.228°F).

Comment choisir un alliage adapté

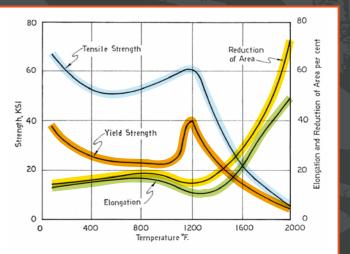
En vue d'une détermination correcte de l'alliage, il faut tenir compte des CONDITIONS D'EXPLOITATION des installations :

- température normale d'exploitation
- température maximale et minimale du four
- température maximale et minimale à proximité des compo-
- fréquence et intervalle des cycles thermiques
- dilatation thermique des composants
- charge appliquée
- modes de chargement et de support, et limitations externes
- durée minimale requise (choix dérivant d'une analyse d'un compromis entre coût et durée de la coulée)
- degré de déformation autorisé
- atmosphère d'exploitation


Sur la base de ces données, le fabricant détermine le meilleur alliage qui puisse


- résister aux températures et à l'atmosphère corrosive du
- présenter une déformation contrôlée et compatible avec les contraintes structurelles de l'installation:
- présenter un creep (fluage) adapté à la charge sur la pièce;
- présenter une résistance à la traction conforme.

Une grande quantité de documents contenant des informations et des études de cas sont disponibles et les fabricants peuvent avoir accès à de nombreuses informations leur permettant de sélectionner l'alliage le mieux adapté à toutes les conditions d'exploitation, y compris les plus complexes.


Durant cette phase, il est indispensable que le client mette à disposition du fournisseur le plus d'informations possibles.

On trouvera ci-dessous plusieurs tableaux, indiquant les éléments déterminants dans la sélection des aciers coulés dans les différents secteurs d'utilisation.

RUPTURE LIFE - HOURS

Matériaux ferritiques

		Nuance d'acier			Comp	oositior	n chym	nique (<u>(</u> %)				Traitement thermique		Essais Mécaniques		Dureté	Masse	Chaleur	pphilopodo	Conductibilité thermique					Coefficent de dilatation thermique	5						Ca	racthé	ristique	es àla	durée							Temnérature	max. à l'air
																												Tem- pérature	600°	C		700°C		800	°C		900°C			1000°C			1100°C		
	Désigna- tion	No. de matériau	C [%]	Si N	In P max [%]	S max. [%]	. Cr [%]	Mo [%]	Ni [%]	Nb (%) [%]	autres [%	Symbole	Tempéra- ture [°C]	Rp0,2 [Mpa] a min.	Rm [Mpa] a min	A [%] . min	[HB] max.	[kg/ dm3]	[J/ (kg*K))]	[W/(mK)]				[10 ⁻⁶ *K ⁻¹] tra 20°C e		Effort	O, e	σ¹% _f	Q, 6	σ	1% f	B	σ¹% _f	Q_{θ}^{L}		σ ^{1%} f	or _e		σ ^{1%} f	Or e	σ1	i ^{1%} [°C]
														0,2% limite d'élasti cité	Rési- stance à la trac- tion	Allongement			20°C	20°C	100°C	800°C		1000°C	400°C	800°C	1000°C	Durée [h]	100 1000	10000	100	1000 10	000 10	0 1000	10000	100	1000	10000	100	1000	10000	100	1000 100	,000	
ritiques	GX 30 CrSi 7b	1.4710	bis	1,00 0, - 2,50 1,	- 0,03	5 0,030	6,00 - 8,00		max. 0,50	-	- -	+A ^c	800 - 850	-	-	-	300	7,7	460	24	-	-		-	12,5	13,5	-			19	-	-	8 -	-	2,5	-	-	-	-	-	-	-		- 7	750
tiques-fer	GX 40 CrSi 13	1.4729	bis	1,00 m - 1,	ax. 00 0,04	0 0,030	12,00 - 14,00	o co	max. 1,00	-	- -	+A ^c	800 - 850	-	-	-	300	7,7	460	24	24,8	30	•	-	12,5	13,5	-		120 75	22	28	21	9 10	7	3,5	-	-	1	-	-	-	-	- ,	- 8	350
et austén	GX 40 CrSi 17	1.4740	bis	1,00 m - 1,	ax. 00 0,04	0,030	16,00	max. 0,50	max. 1,00	-	- -	+A ^c	800 - 850	-	-	-	300	7,7	460	-	20	-		-	12,5	13,5	-			22	-	-	9 -	-	3,5	-	-	1	-	-	-	-	-	- 9	900
ferritques	GX 40 CrSi 24	1.4745	bis	1,00 m - 1,	ax. 00 0,04	0 0,030	23,00	o co	max. 1,00	_	- -			-	-	-	d	7,6	500	18,8	-	-		-	12,5	14	16			22	-	-	9 -	-	3,5	-	-	1	-	-	-	-		- 10	050
aciers	GX 40 CrSi 28	1.4776	bis	1,00 m - 2,50 1,	ax. 00 0,04	0,030	27,00	0.50	max. 1,00	-			ermique	-	-	-	d	7,6	500	18,8	21	-		-	11,5	14	16		- 40	26	25	21	1 -	-	5	8	6,5	1,5	-	-	-	-	-	- 11	150
	GX 130 CrSi 29	1.4777	1,20 bis	1,00 0, - b 2,50 1,	50 is 0,03	5 0,030	27,00	max. 0,50	max. 1,00	-	- -		itement the	-	-	-	d	7,6	500	18,8	-	-		-	11,5	14	16		-	26	-	-	1 12	2 11	5	7	5	1,5	-	-	-	-		- 11	100
	GX 160 CrSi 18	1.4743	bis	1.00	ax. 00 0,04	0 0,030	17,00	max. 0,50	max. 1,00	-	- -		aucun trait	-	-	-	d	7,7	500	18,8	-	-		-	12,5	13,5	-		-	25	-	-	0 -	-	4	-	-	1,5	-	-	-	-		- 9	900
	GX 40 CrNiSi 27-4	1.4823	bis	1,00 m - 1,	ax. 50 0,04	0,030	25,00 - 28,00	IIIax.	3,00 - 6,00	-	- -			250	550	3	d	7,6	500	16,7	21	35		39,6	13	14,5	16,6		100 80	28	45	-	5 25	j -	8	15	5	4	-	-	1	-		- 11	100

(a) 1 Mpa = 1 N/mm2

(b) Ce type peut être employé comme acier coulé résistant à l'usure; dans ce cas, il peut être fourni non traité thermiquement.

(c) +A indique "recuit".

(d) Les pièces coulées peuvent être fournies recuites; dans ce cas la valeur maximale de dureté peut être déterminée.

(e) σr - indique l'effort en MPa pour la résistance à la traction après 100h e 1.000h.

(f) σ 1% -indique l'effort en MPa pour un allongement visqueux de 1% après 10.000h.

Matériaux austénitiques

	Ξ	_					u(%						e +		Sec			a)	Φ	ité	a)				±00	T)																	ire
	02-02-2011	20 20 20					Composition chymique (%)						Traitement thermique		Essais Mécaniques		Dureté	Masse spécifique	Chaleur spécifique	Conducțibilité	nbillindin				Coefficient moyen de dilatation	rnermigu						Ca	ıracthé	ristiques	à la du	rée							Température max. à l'air
																											Tem- péra- ture	60	0°C		700°C		80	D°C	900)°C		1000°0	С		1100°C		
	Dési- gnation	No. de ma- tériau	C Si [%]	Mn] [%]	P max. [%]	S max. [%]	Cr [%]	Mo [%]	Ni [%]	Nb [%]	Co [%]	autres	Symbole tempera-tura [°C]	Rp _{0.2} [Mpa] ^a min.	Rm [Mpa] ^a min.	A [%] min.	[HB] max.	[kg/dm3]	[J/ (kg*K)] a	[W/(I	n*K)] เ			[10	-6*K-1] tra 20)°C e	Effort	σ _r e	σ _{1%} ^f	σ _r e		σ _{1%} f	J _r e	σ _{1%} ^f	σ _r e	σ _{1%} ^f	σ _r ^e		σ _{1%} ^f	σ _r e		σ _{1%} f	[°C]
														0,2% limite d'élasticité	Rési- stance à la traction	Allon- ge- ment			20°C	20°C	100°C	800°C	1000°C	400°C	800°C	1000°C	Durée [h]	100 100	0 1000	0 100	1000 1	0000 1	00 10	00 10000	100 100	0 10000	100	1000	10000	100	1000	10000	
	GX 25 CrNiSi 18-9	1.4825	0,15 0,5 bis - 0,35 2,5	0 max. 0 2,00	0,040	0,030	17,00 - 19,00		8,00 - 10,00	-	-	-		230	450	15	-	7,8	500	14,8	15,5	26	30	17,4	18,3	18,8		- 22	0 78	120	90	44	60 5) 22	40 30	9	-	-	-	-	-	-	900
-	GX 40 CrNiSi 22-10	1.4826	0,30 1,0		0,040		01.00	max. 0,50	9,00 - 11,00	-	-	-		230	450	8	-	7,8	500	14	15	25,4	28,8	17,2	18,3	18,8			82	-	-	46		23		10	-	-	-	-	-	-	950
	GX 25 CrNiSi 20-14	1.4832	0,15 0,5 bis - 0,35 2,5		0,040	0.030		0.50	13,00	-	-	-		230	450	10	-	7,8	500	14	15	25,4	28,8	17,2	18,3	19,3			82	-	-	46		23		10	-	-	-	-	-	-	950
	GX 40 CrNiSi 25-12	1.4837	0,30 1,0 bis - 0,50 2,5	0 max.	0,040	0,030	24,00 - 27,00	n En	11,00 - 14,00	-	-	-		220	450	6	-	7,8	500	14	15	25,4	28,8	17,5	18,4	19,3			-	100	80	50	70 4) 26	45 25	13	26	15	6	-	-	-	1050
	GX 40 CrNiSi 25-20	1.4848	0,30 1,0 bis - 0,50 2,5	0 max. 0 2,00	0,040	0.030	24,00 - 27,00	0.50	19,00	-	-	-		220	450	8	-	7,8	500	14,6	16,7	25	28	17	18	19			-	100	80	65	75 5	36	47 28	17	28	16	7	12	6	2,5	1100
	GX 40 CrNiSiNb 24-24	1.4855	0,30 1,0 bis - 0,50 2,5	0 max.	0,040	0,030	23,00	max. 0,50	23,00 - 25,00	0,80 - 1,80	-	-		220	450	4	-	8,0	500	14	15,5	24,5	27,7	16,8	18	18,5			-	170	125	80	97 7) 46	60 45	22	32	23	7,5	-	10	-	1050
	GX 35 NiCrSi 25-21	1.4805	0,20 1,0 bis - 0,50 2,0	0 max. 2,00	0,040	0,030	19,00	nian.	23,00	-	-	-	Φ	220	430	8	-	8,0	500	-	14	23,8	27,7	16,4	17,5	18,2			-	-	-	80	- 7) 45	- 45	22	-	23	7,5	-	10	-	1000
SS	GX 40 NiCrSi 35-17	1.4806	0,30 1,0 bis - 0,50 2,5	0 max. 2,00	0,040	0.030	16,00 - 18,00	0.50	34,00 - 36,00	-	-	-	thermiqu	220	420	6	-	8,0	500	12	12,3	23	26,8	15,3	17	17,6			-	-	80	55	90 5	30	48 30	17	28	17	6	-	6	3	1000
stenitique	GX 40 NiCrSiNb 35-18	1.4807	0,30 1,0 bis - 0,50 2,5	0 max. 2,00	0,040	0,030	17,00 - 20,00	mun.	34,00 - 36,00	- 1	-	-	aitement	220	420	4	-	8,0	500	12	12,3	23	26,8	15,3	17	17,6			-	180	140	- 1	10 7	-	60 35	-	35	20	-	18	10	-	1000
Aciers au	GX 40 NiCrSi 38-19	1.4865	0,30 1,0 bis - 0,50 2,5	0 max. 2,00	0,040	0,030	18,00 - 21,00	max.	36,00 39,00	-	-	-	aucun tr	220	420	6	-	8,0	500	12	12,2	23,3	26,5	15,3	17	17,6		- -	-	-	80	55	90 5	32	48 30	18	28	17	7	-	6	3	1020
	GX 40 NiCrSiNb 38-19	1.4849	0,30 1,0 bis - 0,50 2,5	0 max. 2,00	0,040	0,030	17,00 - 20,00	max. 0,50	34,00 - 36,00	1,00 - 1,80	-	-		220	420	4	-	8,0	500	12	12,3	23,3	26,5	15,3	17	17,6			-	-	93	60	93 -	38	49 36	20	-	-	8	-	-	-	1020
	GX 10 NiCrSiNb 32-20	1.4859	0,05 0,5 bis - 0,15 1,5	0 max. 0 2,00	0,040	0,030	19,00 - 21,00	0.50	31,00 - 33,00	0,50 - 1,50	-	-		180	440	20	-	8,0	500	12,8	13	25,1	-	17,6	18,7	19,5			-	135	105	64	84 6	36	49 36	15,5	26	14	5	-	-	-	1050
	GX 40 NiCrSi 35-26	1.4857	0,30 1,0 bis - 0,50 2,5	0 max. 2,00	0,040	0,030	24,00 - 27,00	max. 0,50	33,00 - 36,00	-	-	-		220	440	6	-	8,0	500	12,8	13	23,8	27,7	15,7	17,4	18,3			-	-	-	70		40		20	-	-	8	-	-	-	1100
	GX 40 NiCrSiNb 35-26	1.4852	0,30 1,0 bis - 0,50 2,5	0 max. 0 2,00	0,040	0,030	24,00 - 27,00	max. 0,50	33,00 - 36,00	0,80 - 1,80	-	-		220	440	4	-	8,0	500	12,8	13	23,5	27,7	16	17,8	18,6			-	-	155	120	72 9	70	41 49	38	22	30	9	15	8,3	3	1100
	GX 50 NiCrCo 20-20- 20	1.4874		x. max. 0 2,00	0,040	0.030	19,00		18,00	0,75	- 00.00	W: 2,00 - 3,00		320	420	6	-	8,0	460	-	13,8	25	-	15,2	16,5	17			-	-	-	- 1	35 10	0 -	80 60	27	-	32	17	-	-	-	1150
	GX 50 NiCrCoW 35-25- 15-5	1.4869	0,45 1,0 bis - 0,55 2,0	0 max. 0 1,00	0,040		24,00		33,00 - 37,00	-	14,00	W: 4,00 - 6,00		270	480	5	-	8,2	500	10	12,6	-	28	-	-	17,3			-	-	-	-		-		-	-	-	17	-	-	6	1200
	GX 40 NiCrNb 45-35 ^b	1.4889b	0,35 1,5 bis - 0,45 2,0		0,040	0.030	32,50 - 37,50	-	42,00 - 46,00	-	-	-		240	440	3	-	8,0	500	-	11,3	30,6	36,1	14,3	15,3	15,7			-	-	-	-		-	50 35	-	25	20	8	13	9	-	1160

(a) 1 Mpa = 1 N/mm²

(b) Pour de températures de travail inférieures à 1000°C, il serait recommandé de limiter le pourcentage de Cr à 29,00% - 32,00% en masse et pour le Si à 1,00% - 1,50%, car des conditions défavorables pourraient engendrer une fragilisation.

(e) $\sigma_{\rm r}$ - indique l'effort en MPa pour la résistence à la traction après 100h e 1.000h.

(f) $\sigma_{1\%}$ - indique l'effort en MPa pour un allongement visqueux de 1% après 10.000h.

Matériaux résistants à la corrosion

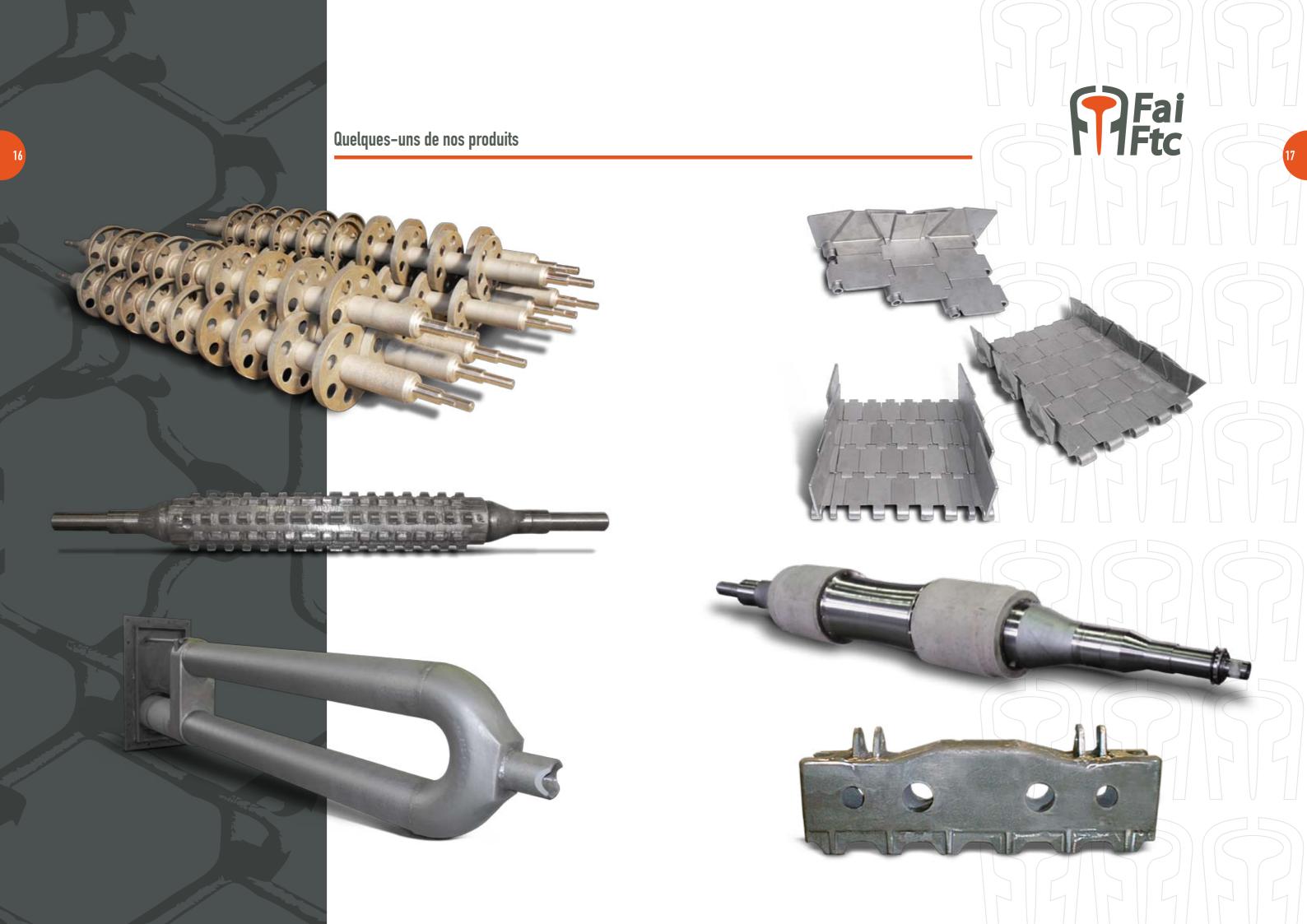
						Nuano	e d'acie	r						
	Qualité de l'acie	er						Composition	on chymique	(%)				
	Désignation	No. de matériau	C max [%]	Si max [%]	Mn max [%]	P max [%]	S max [%]	Cr [%]	Mo [%]	Ni [%]	N [%]	Cu [%]	Nb 1) [%]	W [%] max.
	GX 12 Cr 12	1.4011	0,15	1,0	1,0	0,035	0,025	11,5-13,5	max. 0,5	max. 1,0	-	-	-	-
idnes	GX 7 CrNiMo 12-1	1.4008	0,1	1,0	1,0	0,035	0,025	12,0-13,5	0,20-0,50	1,00-2,00	-	-	-	-
tensiti	GX 4 CrNi 13-4	1.4317	0,06	1,0	1,0	0,035	0,025	12,0-13,5	max. 0,7	3,50-5,00	-	-	-	-
aciers martensitiques	GX 4 CrNiMo 16-5-1	1.4405	0,06	0,8	1,0	0,035	0,025	15,0-17,0	0,70-1,50	4,00-6,00	-	-	-	-
acier	GX 4 CrNiMo 16-5-2	1.4411	0,06	0,8	1,0	0,035	0,025	15,0-17,0	1,50-2,00	4,00-6,00	-	-	-	-
	GX 5 CrNiCu 16-4	1.4525	0,07	0,8	1,0	0,035	0,025	15,0-17,0	max. 0,8	3,50-5,50	max. 0,05	2,50-4,00	max. 0,35	-
	GX 2 CrNi 19-11	1.4309	0,03	1,5	2	0,035	0,025	18,0-20,0	-	9,00-12,00	max. 0,20	-	-	-
	GX 5 CrNi 19-10	1.4308	0,07	1,5	1,5	0,040	0,030	18,0-20,0	-	8,00-11,00	-	-	-	-
aciers austénitiques	GX 5 CrNiNb 19-11	1.4552	0,07	1,5	1,5	0,040	0,030	18,0-20,0	-	9,00-12,00	-	-	8*%C ≤1,0	-
sténit	GX 2 CrNiMo 19-11-2	1.4409	0,03	1,5	2	0,035	0,025	18,0-20,0	2,00-2,50	9,00-12,00	max. 0,20	-	-	-
s ans	GX 5 CrNiMo 19-11-2	1.4408	0,07	1,5	1,5	0,040	0,030	18,0-20,0	2,00-2,50	9,00-12,00	-	-	-	-
acier	GX 5 CrNiMoNb 19-11-2	1.4581	0,07	1,5	1,5	0,040	0,030	18,0-20,0	2,00-2,50	9,00-12,00	-	-	8*%C ≤1,0	-
	GX 5 CrNiMo 19-11-3	1.4412	0,07	1,5	1,5	0,040	0,030	18,0-20,0	3,00-3,50	10,00-13,00	-	-	-	-
	GX 2 CrNiMoN 17-13-4	1.4446	0,03	1,0	1,5	0,040	0,030	16,5-18,5	4,00-4,50	12,50-14,50	0,12-0,22	-	-	-
	GX 2 NiCrMo 28-20-2	1.4458	0,03	1,0	2	0,035	0,025	19,0-22,0	2,00-2,50	26,00-30,00	max. 0,20	max. 2,00	-	-
ent	GX 4 NiCrCuMo 30-20-4	1.4527	0,06	1,5	1,5	0,040	0,030	19,0-22,0	2,00-3,00	27,50-30,50	-	3,00-4,00	-	-
aciers entièrement austénitiques	GX 2 NiCrMoCu 25-20-5	1.4584	0,025	1,0	2	0,035	0,020	19,0-21,0	4,00-5,00	24,00-26,00	max. 0,20	1,00-3,00	-	-
entiè téniti	GX 2 NiCrMoN 25-20-5	1.4416	0,03	1,0	1	0,035	0,020	19,0-21,0	4,50-5,50	24,00-26,00	0,12-0,20	-	-	-
ciers	GX 2 NiCrMoCuN 29-25-5	1.4587	0,03	1,0	2	0,035	0,025	24,0-26,0	4,00-5,00	28,00-30,00	0,15-0,25	2,00-3,00	-	-
ğ	GX 2 NiCrMoCuN 25-20-6	1.4588	0,025	1,0	2	0,035	0,020	19,0-21,0	6,00-7,00	24,00-26,00	0,10-0,25	0,50-1,50	-	-
	GX 2 CrNiMoCuN 20-18-6	1.4557	0,025	1,0	1,2	0,030	0,010	19,5-20,5	6,00-7,00	17,50-19,50	0,18-0,24	0,50-1,00	-	-
S	GX 6 CrNiN 26-7	1.4347	0,08	1,5	1,5	0,035	0,020	25,0-27,0	-	5,50-7,50	0,10-0,20	-	-	-
tique	GX 2 CrNiMoN 22-5-3	1.4470	0,03	1,0	2	0,035	0,025	21,0-23,0	2,50-3,50	4,50-6,50	0,12-0,20	-	-	-
'S ferrii	GX 2 CrNiMoN 25-6-3	1.4468	0,03	1,0	2	0,035	0,025	24,5-26,5	2,50-3,50	5,50-7,00	0,12-0,25	-	-	-
acier iques-	GX 2 CrNiMoCuN 25-6-3-3	1.4517	0,03	1,0	1,5	0,035	0,025	24,5-26,5	2,50-3,50	5,00-7,00	0,12-0,22	2,75-3,50	-	-
aciers austénitiques-ferritiques	GX 2 CrNiMoN 25-7-3	1.4417	0,03	1,0	1,5	0,030	0,020	24,0-26,0	3,00-4,00	6,00-8,50	0,15-0,25	max.1,00	-	1,00
al	GX 2 CrNiMoN 26-7-4	1.4469	0,03	1,0	1	0,035	0,025	25,0-27,0	3,00-5,00	6,00-8,00	0,12-0,22	max.1,30	-	-
	= 1 N/mm ²													

	Caracteris	stique meca	aniques à t	températur	e ambiente						
Epaisseur		Essais Mé	caniques		Essai de résilience	Chaleure spécifique	Conduc therm		Dilatation	thermique	moyenne
[mm] max.	Rp _{0,2} [Mpa] ^a min.	Rp _{1,0} [Mpa] ^a min.	Rm [Mpa]ª min.	A [%] min.	KV [J] min.	[J/(kg*K)]	[W/(m	i*K)]	[10-6	*K-1] tra 20°	°C e
	0,2% limite d'élasticité	0,1% limite d'élasticité	Résistance à la traction	Allongement	Résilience	20°C	50°C	100°C	100°C	300°C	500°C
150	450		620	15	20	440	25	26	10,5	11,3	12
300	440		590	15	27	460	25	26	10,5	11,3	12
300	550b	-	760b	15b	50b	460	26	27	10,5	11	12
300	540		760	15	60	460	17	18	10,8	11,5	12
300	540		760	15	60	460	17	18	11	11,8	12,3
300	750b	-	900b	12b	20	460	17,5	18,5	11,8	12,8	13,4
150	185	210	440	30	80	530	15,2	16,5	16,8	17,9	18,6
150	175	200	440	30	60	530	15,2	16,5	16,8	17,9	18,6
150	175	200	440	25	40	530	15,2	16,5	16,8	17,9	18,6
150	195	220	440	30	80	530	14,5	15,8	15,8	17	17,7
150	185	210	440	30	60	530	14,5	15,8	15,8	17	17,7
150	185	210	440	25	40	530	14,5	15,8	15,8	17	17,7
150	205	230	440	30	60	530	14,5	15,8	15,8	17	17,7
150	210	235	440	20	50	530	13,5	15	16	18	19
150	165	190	430	30	60	500	16	17	14,5	16,2	17
150	170	195	430	35	60	500	15	16	14,5	16,2	17
150	185	210	450	30	60	500	17	21	14,5	15,8	17
150	185	210	450	30	60	450	12,2	13,2	15,1	15,8	16,6
150	220	245	480	30	60	500	17	21	14,5	15,8	17
50	210	235	480	30	60	500	15	16	16,5	17,5	18,5
50	260	285	500	35	50	500	15	16	16,5	17,5	18,5
150	420	-	590	20	30	500	15	-	12,5	13,5	14,5
150	420	-	600	20	30	450	18	19	13	14	-
150	480	-	650	22	50	450	17	18	13	14	-
150	480	-	650	22	50	450	17	18	13	14	-
150	480	-	650	22	50	450	17	18	13	14	-
150	480	-	650	22	50	450	17	18	13	14	-

(b) La valeur du contenu de Nb correspond à la somme du contenu de Nb et Ta.

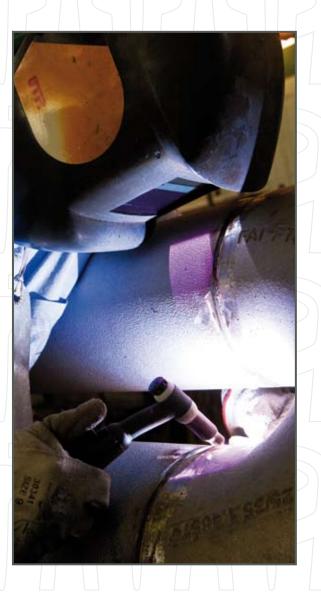
Superalliages

	Nuance d'	'acier				Со	ompos	sition (chym	ique ((%)			Traitement thermique		Essais Mécaniques		Dureté	Masse spécifique	Chaleur spécifique		Conductibilité	thermique		Coefficient	moyen de dilatation	tnermique						Cara	cthéris	tiques	à la (durée						Tompératura
																												Température		600°C		700°	С	8	00°C	Т	900°C	;	10	00°C	1	100°C	
	Désignation	No. de matériau	C [%]	Si [%]	Mn [%]	P max. [%]	S max. [%]	Cr [%]	Mo [%]	Ni [%]	Nb C [%]	D [6]	autres	Symbo- le Températu- re [°C]	R _{p0,2} [Mpa] ^a min.	R _m [Mpa] ^a min.	A [%] min.	[HB] max.	[kg/dm3]	[J/(kg*K)] a		[W/	[m*K)] a		[10-6*	*K ⁻¹] tra 20 e)°C	Effort	σ _r e	(7 _{1%} f	e	σ _{1%} ^f	σ _r e	σ _{1%}	σ _r θ		σ _{1%} ^f	σ _r ^θ	σ _{1%} ¹	σ _r ^θ	σ	f _{1%} f
														·	0,2% limite d'élasticité	Rési- stance à la traction	Allonge- ment			20°C	20°C	100°C	800°C	1000°C	400°C	800°C 1	000°C	Durée [h]	100	1000 10	0000 1	00 1000	10000	100 10	00 1000	0 100	1000	10000	100 10	00 1000	0 100 1	000 10	0000
3	G-NiCr 28 W	2.4879	0,35 bis 0,55	1,00 - 2,00	max. 1,50	0,040	0,030	27,00 - 30,00	max.	47,00 - 50,00			rest W:4,00 - 6,00	en	240	440	3	-	8,2	500	11	11,3	30,6	36,1	14,4	15,7	16,3		-	-	-		70	- 8	0 41	-	45	22	- 2	3 10	-	10	4 1
e de NI et	G-CoCr28 G-NiCr 50 Nb	2.4778	0,05 bis 0,25	0,50 - 1,50	max. 1,50	0,040	0,030	27,00 - 30,00	max. 0,50	max. 4,00	max. 0,50 52,		Fe: rest	ent thermiq	235	490	6	-	8,1	500	8,5	-	21	-	15	16	17		-	-	-	. .	70	_	- 34	48	25	16	23 1:	2 9,5	-	-	4 1
ers a base	G-NiCr 50 Nb	2.4680	max. 0,10	max. 1,00	max. 0,50	0,020	0,020	48,00 - 52,00	max. 0,50		1,00 - 1,80		max. 1,00 max. 0,16	cun traitem	230	540	8	-	8,0	450	14,2	-	-	-	13	15	15		-	-	- 1	70 110	71	105 7	0 38	60	38	18	30 1	5 6,8	-	6	- 1
ACI	G-NiCr 15	2.4815	0,35 bis 0,65	1,00 - 2,50	max. 2,00	0,040	0,030	12,00 - 18,00	max.	58,00 - 66,00			Fe: Rest	and	200	400	3	-	8,3	460	-	12,5	24	27,5	13,3	15,3	16,5		-	-	-		-			60	24	-	20 1	3 -	-	-	- 1


(a) 1 Mpa = 1 N/mm2

(e) $\sigma_{\!_{\rm f}}$ - indique l'effort en MPa pour la résistence à la traction après 100h e 1.000h.

1) 6_{1%} - Indique l'enort en MPa pour dit anongement visqueux de 1% après 10.00011.



Fai

Notre engagement

Confiants en notre savoir-faire, nous effectuons notre travail avec passion et selon les principes de déontologie suivants:

- Attention extrême à la sécurité des installations et à l'environnement.
- Formation constante du personnel.
- Aspiration à des améliorations continues de la qualité des produits et du service via:
 - Les investissements dans des équipements innovateurs;
 - L'utilisation de logiciels de calcul des paramètres complexes, comme systèmes de coulée et d'alimentation, efforts subis par les sections résistantes, etc.;
 - La collaboration avec des laboratoires de recherche.

